Блог
484 0

Свойства отношений и их графы. Бинарные отношения. Операции над бинарными отношениями Операции над множествами

Свойства отношений и их графы. Бинарные отношения. Операции над бинарными отношениями Операции над множествами

Бинарныеотношения.

Пусть A и B – произвольные множества.Возьмем по одному элементу из каждого множества, a из A, b из B изапишем их так:(сначала элемент первого множества, затем элемент второго множества – т.е. намважен порядок, в котором берутся элементы). Такой объект будем называть упорядоченнойпарой. Равными будем считать только те пары, у которых элементы содинаковыми номерами равны.=,если a = c и b= d. Очевидно, что если a ≠ b, то.

Декартовымпроизведением произвольных множеств A и B (обозначается: AB)называется множество, состоящее из всех возможных упорядоченных пар, первыйэлемент которых принадлежит A, а второй принадлежит B. По определению: AB = {| aA и bB}. Очевидно, что если A≠B, то AB ≠ BA. Декартово произведение множества A само на себя n раз называется декартовойстепенью A (обозначается: A n).

Пример 5.Пусть A = {x, y}и B = {1, 2, 3}.

AB = {,,,,,}.

BA = {<1, x, <2, x, <3, x,<1, y, <2, y, <3, y}.

AA = A 2 = {,,,}.

BB = B 2= {<1, 1, <1, 2, <1, 3, <2, 1, <2, 2, <2,3, <3, 1, <3, 2, <3, 3}.

Бинарнымотношением на множестве M называется множество некоторыхупорядоченных пар элементов множества M. Если r – бинарное отношение и парапринадлежит этомуотношению, то пишут:r или x r y.Очевидно, r Í M 2.

Пример 6.Множество {<1, 2, <2, 2, <3, 4, <5, 2,<2, 4} является бинарным отношением намножестве {1, 2, 3, 4, 5}.

Пример 7.Отношение ³ на множестве целых чиселявляется бинарным отношением. Это бесконечное множество упорядоченных пар вида, где x ³ y, x и y – целые числа. Этому отношениюпринадлежат, например, пары <5, 3, <2, 2, <324, -23 и не принадлежат пары <5, 7, <-3, 2.

Пример 8.Отношение равенства на множестве A является бинарнымотношением: I A = {| x Î A}. I A называется диагональю множества A.

Посколькубинарные отношения являются множествами, то к ним применимы операцииобъединения, пересечения, дополнения и разности.

Областьюопределения бинарного отношения rназывается множество D(r)= { x | существует такое y, чтоxry }. Областью значений бинарного отношения r называется множество R(r) = { y | существует такое x, что xry }.

Отношением, обратным к бинарному отношению r Í M 2, называется бинарное отношение r -1 = {|Î r}. Очевидно, чтоD(r ‑1) = R(r), R(r ‑1) = D(r), r ‑ 1 Í M 2.

Композицией бинарных отношений r 1 и r 2, заданных на множестве M, называется бинарное отношение r 2 o r 1 = {| существует y такое, чтоÎ r 1 иÍ r 2 }.Очевидно, что r 2 o r 1 Í M 2.

Пример 9. Пусть бинарное отношение rзадано на множестве M = {a, b, c, d}, r = {,,,}. Тогда D(r) = {a, c},R(r) = {b, c, d},r ‑1 = {,,,},r o r = {,,,}, r ‑1 o r = {,,,}, r o r ‑1 = {,,,,,,}.

Пусть r – бинарное отношение на множестве M. Отношение rназывается рефлексивным, если x r x для любого x Î M. Отношение r называется симметричным, если вместес каждой паройоно содержит и пару.Отношение r называется транзитивным, если из того, что x r y и y r z следует, чтоx r z. Отношение rназывается антисимметричным, если оно не содержит одновременно парыиразличных элементов x ¹ yмножества M.

Укажемкритерии выполнения этих свойств.

Бинарноеотношение r на множестве M рефлексивно тогда и только тогда, когда I M Í r.

Бинарноеотношение r симметрично тогда и толькотогда, когда r = r ‑1.

Бинарноеотношение r на множестве M антисимметрично тогда и только тогда, когда r Ç r ‑1 = I M.

Бинарноеотношение r транзитивно тогда и толькотогда, когда r o r Í r.

Пример 10.Отношение из примера 6 является антисимметричным, но не является симметричным,рефлексивным и транзитивным. Отношение из примера 7 является рефлексивным,антисимметричным и транзитивным, но не является симметричным. Отношение I A обладает всеми четырьмя рассматриваемымисвойствами. Отношения r ‑1 o r и r o r ‑1 являются симметричными,транзитивными, но не являются антисимметричными и рефлексивными.

Отношением эквивалентности на множестве M называется транзитивное, симметричное ирефлексивное на М бинарное отношение.

Отношением частичногопорядка на множестве М называется транзитивное, антисимметричное ирефлексивное на М бинарное отношение r.

Пример 11.Отношение из примера 7 является отношением частичного порядка. Отношение I A является отношением эквивалентности ичастичного порядка. Отношение параллельности на множестве прямых являетсяотношением эквивалентности.

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û(" х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û(" х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение. Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

R симметричнона Х Û(" х, у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у, то и прямая у обязательно будет пересекать прямую х.

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение. Отношение R намножестве Х называется асимметричным, если ни для каких элементов х, у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х.

R асимметричнона Х Û(" х, у Î Х ) х R у Þ

Пример. Отношение « х < у » асимметрично, т.к. ни для какой пары элементов х, у нельзя сказать, что одновременно х < у и у < х.

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение. Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у, а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û(" х, у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение « х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение. Отношение R намножестве Х называется транзитивным, если для любых элементов х, у, z из множества Х из того, что х находится в отношении с у, а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û(" х, у, z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение « х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение. Отношение R намножестве Х называется связным, если для любых элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.

R связнона Х Û(" х, у, z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.

Пример. Отношение « х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение « х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение « х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у, то и студент у является однокурсником студента х;

3) транзитивности, т.к. если студент х - однокурсник у, а студент у – однокурсник z, то студент х будет однокурсником студента z.

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:

Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».

Определение. Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B. При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание: если A = B, то говорят, что R есть отношение на множестве A.

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A, где A = (a 1, a 2,..., a n), соответствует квадратная матрица порядка n, в которой элемент c ij, стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R, или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A. Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a Ra (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a, b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1, то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb, но не bRa;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b): a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c, то a начальник c.

Определите свойства отношения R i, заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)}; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1, R 1 есть отношения, заданные на множестве A.

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b): (a,b) ∈ R 1 или (a,b) ∈ R 2 };

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b): (a,b) ∈ R 1 и (a,b) ∈ R 2 };

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b): (a,b) ∈ R 1 и (a,b) ∉ R 2 };

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}.;

    дополнение R 1 U \ R 1, где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -1 1: R -1 1 = {(a,b): (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение. Если R ⊂ A × B, то R º R -1 называется ядром отношения R.

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A.

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1.
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I.
  5. R антирефлексивно ⇔ R ⌒ I = ∅.

Задача 3.4. Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1, S -1 и S º R. Проверьте, что (S º R) -1 = R -1, S -1.

Решение.R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};R -1 º S -1 = {(1,1), (1,2), (1,3), (2, 1), (2,2), (2,3)} = (S º R) -1.

Задача 3.5. Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1, S -1, R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, R º S, S -1 º R -1, R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, S º R, R -1 º S -1, S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, S º R, R -1 º S -1, R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, R º S, S -1 º R -1, S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1, S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, S º R, R -1 º S -1, R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1, S -1, R º S, S -1 º R -1, S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1, S -1, S º R, R -1 º S -1, R º R.

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называютсяэлементамимножества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства.

Пустым множеством– называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов., A=B

Множество B называется подмножеством множества А (, тогда и только тогда когда все элементы множества B принадлежат множеству A.

Например:, B =

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называетсяуниверсальным(u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1.Объединением2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р:,,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность.;

· Дистрибутивный.;

U
4.Дополнение. Если А – подмножество универсального множества U, то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U, которые не принадлежат множеству А.

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1, а 2, а 3, …а n), где а 1 ϵ А 1; а 2 ϵ А 2; …; а n ϵ А n;

Декартовым (прямым) произведением множеств А 1, А 2, …, А n, называется мн-во, которое состоит из упорядоченных n k вида.

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматриваютбинарныеотношения. При чем говорят, что а 1, а 2 находятся в бинарном отношении R, когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {( a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность:.

· Антирефлексивность (иррефлексивность):.

· Симметричность:.

· Антисимметричность:.

· Транзитивность:.

· Асимметричность:.

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Пусть R - некоторое бинарное отношение на множестве X, а х, у, z любые его элементы. Если элемент х находится в отношении R с элементом у, то пишут xRy.

1. Отношение R на множестве X называется рефлексивным, если каждый элемент множества находится в этом отношении с самим собой.

R -рефлексивно на X <= xRx для любого x€ X

Если отношение R рефлексивно, то в каждой вершине графа имеется петля. Например, отношения равенства и параллельности для отрезков являются рефлексивными, а отношение перпендику­лярности и «длиннее» не являются рефлексивными. Это отражают графы на рисунке 42.

2. Отношение R на множестве X называется симметричным, если из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у находится в этом же отношении с элементом х.

R - симметрично на (хЯу =у Rx)

Граф симметричного отношения содержит парные стрелки, идущие в противоположных направлениях. Отношения параллельнос­ти, перпендикулярности и равенства для отрезков обладают симмет­ричностью, а отношение «длиннее» - не является симметричным (рис. 42).

3. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у в этом отношении с элементом х не находится.

R - антисимметрично на Х« (xRy и xy ≠ yRx)

Замечание: черта сверху обозначает отрицание высказывания.

На графе антисимметричного отношения две точки может сое­динять только одна стрелка. Примером такого отношения является отношение «длиннее» для отрезков (рис. 42). Отношения параллель­ности, перпендикулярности и равенства не являются антисиммет­ричными. Существуют отношения, не являющиеся ни симметрич­ными, ни антисимметричными, например отношение «быть братом» (рис. 40).

4. Отношение R на множестве X называется транзитивным, если из того, что элемент х находится в данном отношении с элементом у и элемент у находится в этом лее отношении с элементом z, следует, что элемент х находится в данном отношении с элементом Z

R - транзитивно на A≠ (xRy и yRz= xRz)

На графах отношений «длиннее», параллельности и равенства на рисунке 42 можно заметить, что если стрелка идет от первого элемента ко второму и от второго к третьему, то обязательно есть стрелка, идущая от первого элемента к третьему. Эти отношения яв­ляются транзитивными. Перпендикулярность отрезков не обладает свойством транзитивности.

Существуют и другие свойства отношений между элементами одного множества, которые мы не рассматриваем.

Одно и то же отношение может обладать несколькими свойст­вами. Так, например, на множестве отрезков отношение «равно» - рефлексивно, симметрично, транзитивно; отношение «больше» - антисимметрично и транзитивно.

Если отношение на множестве X рефлексивно, симметрично и транзитивно, то оно является отношением эквивалентности на этом множестве. Такие отношения разбивают множество X на классы.

Данные отношения проявляются, например, при выполнении заданий: «Подбери полоски равные по длине и разложи по груп­пам», «Разложи мячи так, чтобы в каждой коробке были мячи одно­го цвета». Отношения эквивалентности («быть равным по длине», «быть одного цвета») определяют в данном случае разбиение мно­жеств полосок и мячей на классы.

Если отношение на множестве 1 транзитивно и антисимметрич­но, то оно называется отношением порядка на этом множестве.

Множество с заданным на нем отношением порядка называется упорядоченным множеством.

Например, выполняя задания: «Сравни полоски по ширине и разложи их от самой узкой до самой широкой», «Сравни числа и разложи числовые карточки по порядку», дети упорядочивают эле­менты множеств полосок и числовых карточек при помощи отно­шений порядка; «быть шире», «следовать за».

Вообще отношения эквивалентности и порядка играют боль­шую роль в формировании у детей правильных представлений о классификации и упорядочении множеств. Кроме того, встречается много других отношений, которые не являются ни отношениями эквивалентности, ни отношениями порядка.

6. Что такое характеристическое свойство множества?

7. В каких отношениях могут находиться множества? Дайте пояснения каждому случаю и изобразите их при помощи кругов Эйлера.

8. Дайте определение подмножества. Приведите пример множеств, одно из которых является подмножеством другого. Запишите их от­ношение при помощи символов.

9. Дайте определение равных множеств. Приведите примеры двух равных множеств. Запишите их отношение при помощи символов.

10. Дайте определение пересечения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

11. Дайте определение объединения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

12. Дайте определение разности двух множеств и изобразите ее при помощи кругов Эйлера для каждого частного случая.

13. Дайте определение дополнения и изобразите его при помощи кругов Эйлера.

14. Что называется разбиением множества на классы? Назовите усло­вия правильной классификации.

15. Что называется соответствием между двумя множествами? Назо­вите способы задания соответствий.

16. Какое соответствие называется взаимно однозначным?

17. Какие множества называют равномощными?

18. Какие множества называют равночисленными?

19. Назовите способы задания отношений на множестве.

20. Какое отношение на множестве называют рефлексивным?

21. Какое отношение на множестве называют симметричным?

22. Какое отношение на множестве называют антисимметричным?

23. Какое отношение на множестве называют транзитивным?

24. Дайте определение отношения эквивалентности.

25. Дайте определение отношения порядка.

26. Какое множество называют упорядоченным?

Добавить комментарий